Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors.

نویسندگان

  • Xuexin Duan
  • Yue Li
  • Nitin K Rajan
  • David A Routenberg
  • Yorgo Modis
  • Mark A Reed
چکیده

Monitoring the binding affinities and kinetics of protein interactions is important in clinical diagnostics and drug development because such information is used to identify new therapeutic candidates. Surface plasmon resonance is at present the standard method used for such analysis, but this is limited by low sensitivity and low-throughput analysis. Here, we show that silicon nanowire field-effect transistors can be used as biosensors to measure protein-ligand binding affinities and kinetics with sensitivities down to femtomolar concentrations. Based on this sensing mechanism, we develop an analytical model to calibrate the sensor response and quantify the molecular binding affinities of two representative protein-ligand binding pairs. The rate constant of the association and dissociation of the protein-ligand pair is determined by monitoring the reaction kinetics, demonstrating that silicon nanowire field-effect transistors can be readily used as high-throughput biosensors to quantify protein interactions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A simulation study on the performance of various label-free electronic biosensors

The efficient detection of charged biomolecules by biosensor with appropriate semiconducting nanomaterials and with optimum device geometry has caught tremendous research interest in the present decade. Here, the performance of various label-free electronic biosensors to detect bio-molecules is investigated by simulation technique. Silicon nanowire sensor, nanosphere sensor and double gate fiel...

متن کامل

A simulation study on the performance of various label-free electronic biosensors

The efficient detection of charged biomolecules by biosensor with appropriate semiconducting nanomaterials and with optimum device geometry has caught tremendous research interest in the present decade. Here, the performance of various label-free electronic biosensors to detect bio-molecules is investigated by simulation technique. Silicon nanowire sensor, nanosphere sensor and double gate fiel...

متن کامل

Study the Effect of Silicon Nanowire Length on Characteristics of Silicon Nanowire Based Solar Cells by Using Impedance Spectroscopy

Silicon nanowire (SiNW) arrays were produced by electroless method on polycrystalline Si substrate, in HF/ AgNO3 solution. Although the monocrystalline silicon wafer is commonly utilized as a perfect substrate, polycrystalline silicon as a low cost substrate was used in this work for photovoltaic applications. In order to study the influence of etching time (which affects the SiNWs length) on d...

متن کامل

Effect of Silicon Nanowire on Crystalline Silicon Solar Cell Characteristics

Nanowires (NWs) are recently used in several sensor or actuator devices to improve their ordered characteristics. Silicon nanowire (Si NW) is one of the most attractive one-dimensional nanostructures semiconductors because of its unique electrical and optical properties. In this paper, silicon nanowire (Si NW), is synthesized and characterized for application in photovoltaic device. Si NWs are ...

متن کامل

Performance Study and Analysis of Heterojunction Gate All Around Nanowire Tunneling Field Effect Transistor

In this paper, we have presented a heterojunction gate all around nanowiretunneling field effect transistor (GAA NW TFET) and have explained its characteristicsin details. The proposed device has been structured using Germanium for source regionand Silicon for channel and drain regions. Kane's band-to-band tunneling model hasbeen used to account for the amount of band-to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nature nanotechnology

دوره 7 6  شماره 

صفحات  -

تاریخ انتشار 2012